Intervertebral Disc Disease in the Dachshund

Bill Oxley
MA VetMB CertSAS MRCVS
Willows Referral Service
Solihull
West Midlands

www.willows.uk.net
Intervertebral Disc Disease in the Dachshund

- Overview of IVDD
- Clinical Signs
- Diagnosis
- Treatment
- Prevention

From the Dansk Gravhundeklub website
Overview of IVDD
Overview of IVDD

- **Normal anatomy**
- The intervertebral discs sit between the vertebrae and act as shock absorbers
Overview of IVDD

- Normal anatomy
- Discs have a soft centre (the nucleus pulposus) inside a fibrous ring (the annulus fibrosus)
- The normal nucleus pulposus is a viscous gel
- When surrounded by the tough annulus fibrosus the gel will compress and absorb energy like a shock absorber
Overview of IVDD

• Disc disease
 • First categorised by Hansen in 1952
 • Degeneration of either component of the disc can occur
 • Nucleus pulposus degeneration
 • Annulus fibrosus degeneration
Overview of IVDD

• Disc disease
 • First categorised by Hansen in 1952
 • Degeneration of either component of the disc can occur
 • Nucleus pulposus degeneration
 • Hansen Type 1 disease
 • Common in Daschunds
 • Can lead to sudden onset of problems
 • Annulus fibrosus degeneration
Overview of IVDD

- Disc disease
 - First categorised by Hansen in 1952
 - Degeneration of either component of the disc can occur
 - Nucleus pulposus degeneration
 - Annulus fibrosus degeneration
 - Hansen Type 2 disease
 - Unusual in Dachshund
 - Can lead to gradual, progressive onset of problems
Overview of IVDD

• **Type 1 Disease**
 • Increased incidence in chondrodystrophic (or more correctly hypochondroplastic) breeds including -
 • Dachshund
 • Pekingese
 • Beagle
 • Spaniel breeds
 • **Hypochondroplasia** -
 • Gene mutation causes abnormal cartilage production
 • Results in characteristic body shape
 • But..... also contributes towards chondroid metaplasia – the cause of nucleus pulposus degeneration
Overview of IVDD

• Chondroid Metaplasia
 • Results in changes to the nucleus pulposus -
 • Loss of fluid
 • Replacement with cartilage
 • Severely affected discs may become calcified, although this does not always occur
 • The nucleus becomes less compressible
 • This places increased forces on the annulus which begins to degenerate
Overview of IVDD

- **Chondroid Metaplasia**
- Eventually the annulus ruptures and degenerate nucleus pulposus is extruded into the vertebral canal.
- This causes compression of the spinal cord, often resulting in clinical signs.
- Lifetime incidence of 18% in Dachshunds (probably more without obvious signs).
Overview of IVDD

- Chondroid Metaplasia
- Microscopic changes begin before birth
- Macroscopic changes are present in around 90% of Dachshunds by one year of age
- As discs degenerate they may become mineralised
Clinical Signs
Clinical Signs

• What to look out for
 • Pain
 • Incoordination (ataxia)
 • Paralysis
Clinical Signs

• What to look out for
 • Pain
 • Yelping (unprovoked or when handled)
 • Reluctance to jump or climb
 • Arching of the back
 • Low head carriage
 • Reluctance to lower head to eat
 • Reluctance to look upwards
 • Incoordination (ataxia)
 • Paralysis
Clinical Signs

• What to look out for
 • Pain
 • Incoordination (ataxia)
 • Most commonly hindlimbs
 • May affect all four limbs
 • When severe see obvious stumbling, swaying and wobbliness
 • When subtle -
 • Paws may occasionally be placed upsidedown
 • May hear claws scraping on hard ground
 • Incoordination may only be seen on difficult terrain
 • Paralysis
Clinical Signs

• What to look out for
 • Pain
 • Incoordination (ataxia)
 • Paralysis
 • Usually hindlimbs although occasionally all four limbs
 • Commonly preceded by incoordination
 • May be associated with urinary incontinence
Clinical Signs

• Neurological Grading
 • Grade 1 - Pain Only
 • Grade 2 - Ataxia / muscle weakness - walking
 • Grade 3 - Muscle weakness - not walking
 • Grade 4 - Paralysis with pain sensation
 • Grade 5 - Paralysis without pain sensation
Clinical Signs

- What to do!
 - Seek advice from your vet
 - Paralysis or rapid progression of signs should be considered emergencies
 - Pain or mild non-progressive ataxia warrant urgent (same or next day) veterinary examination
Diagnosis
Diagnosis

• Initial Assessment
 • Clinical examination
 • Establish the problem as neurological
 • Assess any concurrent problems
 • General health
 • Orthopaedic examination
 • Disc extrusion cannot be diagnosed on the basis of clinical examination alone -
 • There are many causes of back pain and neurological signs other than disc extrusion
Diagnosis

• Initial Assessment
 • X-Rays
 • Of limited value -
 • The spinal cord does not show up on X-Rays
 • Disc calcification indicates the presence of disc degeneration, not extrusion
 • A narrowed intervertebral disc space indicates that extrusion has occurred.... but not necessarily recently

 • Cord compression by disc extrusion cannot be diagnosed by X-Rays
 • Consider immediate referral before X-Rays
Diagnosis

• Diagnosis
 • Assessment of spinal cord compression can be made by-
 • Myelography
 • MRI examination
 • CT examination
Diagnosis

- **Myelography**
 - A dye that shows up on an X-ray is injected into the fluid that surrounds the spinal cord
 - Deviation of the outline of the fluid space indicates compression
 - Some risk
Diagnosis

- MRI (Magnetic Resonance Imaging)
 - A very strong magnet causes the atoms within tissues to emit radio waves
 - These are measured and are used to make a 3-D image of the body
 - Provides cross-sectional images of spinal cord and discs
 - Safe
Diagnosis

- MRI
Diagnosis
Diagnosis

- CT (Computed Tomography)
 - A 3-D X-Ray
 - Rapid and accurate imaging of the bones of the spine
 - Computer processing allows soft tissues to be seen
 - Safe
Diagnosis

- CT
Diagnosis

- CT
Treatment
Treatment

• Treatment Options
 • Non-Surgical
 • Surgical
Treatment

• Treatment Options
 • Non-Surgical
 • Can be considered if -
 • Mild pain
 • No ataxia
 • First episode of problems
 • Cage rest 4 weeks, then limited exercise further 2 months
 • Nearly all dogs improve.......
 • BUT..... Up to 34% will have further extrusion of disc material
Treatment

- Treatment Options
 - Non-Surgical

- Steroids???

 - Ruddle (VCOT 2006) reviewed outcomes in 250 dogs (including 141 Dachshunds) paralysed as a result of disc extrusion and treated surgically
 - Outcomes were no different in dogs that were or were not given steroids
Treatment

• Treatment Options
 - Non-Surgical

 - Levine (JAVMA 2008) reviewed outcomes in 161 dogs (including 87 Dachshunds) treated surgically
 - Outcomes were no different in dogs that were or were not given steroids
 - Dogs given Dexamethasone were 3.4 times as likely to have a complication including urinary tract infection or diarrhoea
Treatment

• Treatment Options
 • Non-Surgical
 • The use of any form of steroids is not currently recommended either as part of conservative management or prior to surgery.
Treatment

• Treatment Options
 • Surgical
 • Most ataxic or paralysed dogs
 • Dogs with pain not responding to conservative treatment
 • Over 90% of ataxic or paralysed dogs recover after surgery -
 • Dogs with more severe signs may have residual deficits
 • Recovery may take several weeks
 • Intensive nursing required if paralysed +/- incontinent
 • Paralysed dogs without pain sensation have a worse prognosis
 • Between 50 and 60% are expected to recover the ability to walk
 • Prompt surgery is essential (under 24 hours)
Treatment

• Surgical Treatment
 • A window is created in the vertebra to allow access to the spinal cord
 • This is usually done from the side of the bone in the back, although in the neck the underside of the bone is used
 • Extruded disc material is carefully retrieved from around the cord
Treatment

- Surgical Treatment
 - Hemilaminectomy
Treatment

- Surgical Treatment
 - Hemilaminectomy
Treatment

- Surgical Treatment
 - Hemilaminectomy
Treatment

Treatment Outcomes

<table>
<thead>
<tr>
<th>Neurological Grade</th>
<th>Non-surgical treatment</th>
<th>Surgical Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Pain Only</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td>2 - Ataxia / Weakness - walking</td>
<td>84%</td>
<td>95%</td>
</tr>
<tr>
<td>3 - Weakness - not walking</td>
<td>84%</td>
<td>93%</td>
</tr>
<tr>
<td>4 - Paralysis - with pain sensation</td>
<td>81%</td>
<td>95%</td>
</tr>
<tr>
<td>5 - Paralysis - no pain sensation</td>
<td>7%</td>
<td>64%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurological Grade</th>
<th>Non-surgical treatment</th>
<th>Surgical Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrence Rate</td>
<td>34-40%</td>
<td>0-15%</td>
</tr>
</tbody>
</table>
Prevention
Prevention

• Genetics
 • Heritability of disc disease
 • Much recent work by Vibeke Jensen in Denmark
 • She showed disc degeneration to be highly heritable in Dachshunds (heritability estimate, 0.47 to 0.87)
 • Heritability of 1 indicates that all variation is genetic in origin and a heritability of 0 indicates that none of the variation is genetic
 • Incidence varies significantly between different lines
Prevention

• Genetics
 • Mechanism of inheritance
 • Not a single gene (e.g. ABO blood group in humans)
 • Severity of disc disease determined by the effects of several genes and environmental factors
 • Dachshund body shape does not promote disc degeneration
 • Hypochondroplasia gene........
 •is thought to be a major genetic factor in the development of chondroid metaplasia......
 •but is responsible for the typical Dachshund conformation
 • So can we keep one without the other.....??
Prevention

• Genetics
 • Mechanism of inheritance
 • Probably!
 • Since several genes are involved, a reduction in the prevalence of disc disease should be possible by selective breeding without changing the characteristics of the breed
Prevention

• Breeding Programs
 • Criteria for success
 • The characteristic must have a significant genetic basis
 • Heritability estimate
 • The characteristic must be measurable before the animal breeds
 • Measurement of the characteristic must be accurate
 • A high proportion of the population must take part
 • Affected dogs must not be used for breeding

The story of hip dysplasia........
Prevention

- **Breeding Programs**
 - Criteria for success
 - Cannot use disc rupture itself as measured characteristic -
 - Disc disease may not manifest until after breeding
 - Some dogs with severe disc degeneration will never show signs, but will pass on the problem
 - **We need an early measure of the severity of disc degeneration in a potential breeding dog**
 - Disc calcification has been suggested
 - Known to be related to severe degeneration
 - Can be measured with an X-Ray at 2 years of age

- **BUT... Is disc rupture strongly associated with disc calcification?**
Prevention

• Jensen et al (JAVMA 2008)
 • 61 Dachshunds -
 • All X-Rayed when 2 years old
 • Surviving dogs X-Rayed at 8 years old
 • All episodes of disc rupture causing disease or death recorded
 • 22 dogs had had disc extrusion diagnosed
 • The number of calcified discs decreased with age
 • Must screen early
 • Nearly 50% of calcified discs probably extruded (some without signs)
Prevention

- Odds of clinical disc rupture increase by 1.42 for each calcified disc
- The risk of euthanasia due to disc disease was -
 - 5% when 4 or less calcified discs
 - 37% when > 4 calcified discs

<table>
<thead>
<tr>
<th>Number of calcified discs</th>
<th>Total number of dogs</th>
<th>Dogs with extrusion</th>
<th>Dogs without extrusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1 or 2</td>
<td>26</td>
<td>3 (11%)</td>
<td>23 (89%)</td>
</tr>
<tr>
<td>3 or 4</td>
<td>16</td>
<td>7 (43%)</td>
<td>9 (57%)</td>
</tr>
<tr>
<td>5 or more</td>
<td>19</td>
<td>12 (63%)</td>
<td>7 (37%)</td>
</tr>
</tbody>
</table>
Prevention

- Jensen et al (JAVMA 2008)

- In summary -
- There is a quantitative association between the number of calcified discs at 2 years of age and occurrence of disc extrusion.
Prevention

- Breeding Programs
 - Danish Dachshund Club
 - Initially a voluntary scheme
 - Screening between 2 and 4 years old
 - Breeding recommended only when 0,1 or 2 calcified discs
 - If 3 or 4 discs -
 - Only one litter
 - Other parent must have <3 calcified discs
 - Should not breed if >4 calcified discs
Prevention

- **Breeding Programs**
 - **Danish Kennel Club**
 - From 1st July 2009 litters can only be registered if both parents satisfy the Club scheme criteria
 - Some of the problems of HD scheme avoided -
 - Not voluntary!!
 - Registration is binding
 - The owner may not ask the vet to rule on the number of calcifications
 - Test results are published
Prevention

- Breeding Programs
- Danish Kennel Club
- Dogs are given a K-score between 0 and 9 according to the number of calcified discs present
- Too early to know if the program will be successful
Prevention

• Breeding Programs
 • Criteria for success
 • The characteristic must have a significant genetic basis
 • Heritability estimate
 • The characteristic must be measurable before the animal breeds
 • Measurement of the characteristic must be accurate
 • A high proportion of the population must take part
 • Affected dogs must not be used for breeding

The story of hip dysplasia........

IVDD........ is up to you!
Thank You

Any questions?